支持向量机(SVM)广泛应用于模式分类和非线性回归领域。 SVM算法的原始形式由Vladimir N.Vapnik和Alexey Ya提出。自从那以后,SVM已经被巨大地改变以成功地用于许多现实世界问题。 1.什么是支持向量机(SVM)?...
08月10日
支持向量机(SVM)广泛应用于模式分类和非线性回归领域。 SVM算法的原始形式由Vladimir N.Vapnik和Alexey Ya提出。自从那以后,SVM已经被巨大地改变以成功地用于许多现实世界问题。 1.什么是支持向量机(SVM)?...
本文介绍了多项式回归的过拟合和欠拟合、泛化能力和学习曲线,通过对比测试集和验证集的MSE的学习曲线,判断拟合是过拟合还是欠拟合,寻找到最合适的模型。 高阶多项式回归对训练数据的拟合,可能会比简单线性...
如果数据比简单的直线更为复杂,我们也可以用线性模型来拟合非线性数据。一个简单的方法就是将每一个特征的幂次方添加为一个新的特征,然后在这个拓展的特征集上进行线性拟合,这种方法成为多项式回归。 回归...