Python大规模建模的特征值选择和性能评估方法详解
大量的特征变量,很多的模型,模型也有很多参数,如何选择合适的特征、合适的模型和合适的模型参数,这对建模是很重要的,但也是很困难的。并且选择最优的方案,方法也是很多的,这里将其中一种方法尽量描述清楚:
通过遍历所有的特征组合,用最一般的模型去拟合,并计算各种特征组合的模型的性能评估,选择最好的特征组合。用最好的特征组合去创建其他模型及各种参数,确定最好的模型和参数。
加载sklearn的数据集,X是一个13维度的特征变量,y是一个一维的分类离散变量。这里我们寻求一个最好的X的特征组合去拟合y的分类。下面是加载数据集的代码:
from sklearn.datasets import load_wine wine = load_wine() X = wine.data y = wine.target
import matplotlib.pyplot as plt import pandas as pd import numpy as np from sklearn import tree from sklearn import ensemble from sklearn import linear_model from sklearn.model_selection import cross_val_score from sklearn.model_selection import train_test_split from sklearn.datasets import load_wine from sklearn.grid_search import GridSearchCV
2.1 加载数据
整理数据,把X转换为pandas的DataFrame类型,定义一个X的所有特征的组合。
wine = load_wine() X = wine.data y = wine.target X = pd.DataFrame(X) features = [0,1,2,3,4,5,6,7,8,9,10,11,12]
2.2 定义特征遍历函数
定义一个特征遍历函数combinations,并且把特征组合遍历存放在group_combinations
def combinations(ls): n=1<<len(ls) tmp=[] for i in range(n): bits=[i>>offset&1 for offset in range(len(ls)-1,-1,-1)] if np.sum(bits)>0: current=[ls[index] for (index,bit) in enumerate(bits) if bit==1] tmp= tmp+[current] return tmp group_combinations = combinations(features)
这个变量的部分内容是这样的,总共有8191中组合
其实就是
2.3 遍历各类回归模型
定义两个变量存放最好的特征组合和准确率,遍历group_combinations里面的每一项,通过cross_val_score计算模型得分。
- 我们选择简单的常用的logistic分类回归模型去寻找最好的特征
- 我们通过cross_val_score交叉检验(分5组交叉)去计算模型预测准确率
- cross_val_score函数返回的是准确率,cv=5就是分成5组,返回5个准确率
lm = linear_model.LogisticRegression() best_feature='' best_score = 0; for v in group_combinations: x = X[v] score = np.mean(cross_val_score(lm,x,y,cv=5,scoring='accuracy'))*100 if score>best_score: best_score=score best_feture=v print('特征'+str(v) +'的平均准确率:'+ '%.4f' % score + '%') print('最好的特征组合是'+str(best_feture)+',对应的准确率是:' +'%.4f' % best_feature + '%')
然后我们重新定义x特征,只使用[0, 1, 2, 3, 6, 8, 9, 10, 12]
features = [0, 1, 2, 3, 6, 8, 9, 10, 12] x=X[[0, 1, 2, 3, 6, 8, 9, 10, 12]]
3.1 决策树模型
建立一个基本的决策树模型,看看效果如何。
dtc = tree.DecisionTreeClassifier(random_state=0) dtc_s = np.mean(cross_val_score(dtc,x,y,cv=5,scoring='accuracy'))*100 print('平均准确率:'+ '%.4f' % dtc_s + '%')
平均准确率:87.5765%
比logistic分类回归差,那我们在看看决策树模型的其他参数的情况如何。
接下来我们用网格搜索遍历一些参数进行调参,我们遍历criterion的两个和max_depth
- criterion=’gini’,分裂节点时评价准则是Gini指数
- criterion=’entropy’,分裂节点时的评价指标是信息增益
max_depth
如果为None,表示树的深度不限。直到所有的叶子节点都是纯净的,即叶子节点中所有的样本点都属于同一个类别
还有其他参数可以遍历,就不一一列举了。
GridSearchCV模块是对指定的dtc模型,对parameters参数进行遍历,返回模型得分的一个模块
parameters={ 'criterion':['gini','entropy'], 'max_depth':[1,2,3,4,5,6,7,8] } grid_search=GridSearchCV(dtc,parameters,scoring='accuracy',cv=5) grid_search.fit(x,y) print('最佳参数组合是'+str(grid_search.best_params_) +',对应的准确率是:'+'%.4f' % (grid_search.best_score_*100)+'%' )
最佳参数组合是{‘criterion’: ‘entropy’, ‘max_depth’: 2},对应的准确率是:92.1348%
总体来说,决策树模型比logistic模型差。
3.2 随机森林模型
先用默认的模型去建立一个基本的随机森林模型。
在随机森林中random_state的作用是告诉代码生成一个固定的森林,但是里面的每一课树长的都是不一样的
rfc = ensemble.RandomForestClassifier(random_state=0) rfc_s = np.mean(cross_val_score(rfc,x,y,cv=5,scoring='accuracy'))*100 print('平均准确率:'+ '%.4f' % rfc_s + '%')
平均准确率:96.6658%
非常好的准确率,我们接下来进行寻找有没有更优的参数。
n_estimators参数是弱学习器的最大迭代次数,或者说最大的弱学习器的个数。一般来说n_estimators太小,容易欠拟合,n_estimators太大,计算量会太大,并且n_estimators到一定的数量后,再增大n_estimators获得的模型提升会很小,所以一般选择一个适中的数值。默认是100。我们遍历n_estimators从10 20 30 到150,
parameters = {'n_estimators':np.arange(10,151,10)} grid_search=GridSearchCV(rfc,parameters,scoring='accuracy',cv=5) grid_search.fit(x,y) print('最佳参数组合是'+str(grid_search.best_params_) +',对应的准确率是:'+'%.4f' % (grid_search.best_score_*100)+'%' )
最佳参数组合是{‘n_estimators’: 40},对应的准确率是:98.3146%
这样我们的准确率得到进一步的提高。
我们看看其他参数的调整能不能进一步提高准确率。我们锁定n_estimators=40
rfc = ensemble.RandomForestClassifier(n_estimators=40) parameters = {'max_depth':np.arange(3,11,2), 'min_samples_split':np.arange(5,21,2)} grid_search=GridSearchCV(rfc,parameters,scoring='accuracy',cv=5) grid_search.fit(x,y) print('最佳参数组合是'+str(grid_search.best_params_) +',对应的准确率是:'+'%.4f' % (grid_search.best_score_*100)+'%' )
最佳参数组合是{‘max_depth’: 5, ‘min_samples_split’: 13},对应的准确率是:98.3146%,和前面的一样,没有找到更好的。
这里我们是锁定锁定n_estimators=40去做遍历,我们可以通过三个参数一起来遍历试一下。但这样运行的速度会慢一点。
rfc = ensemble.RandomForestClassifier(random_state=0) parameters = {'n_estimators':np.arange(10,71,10), 'max_depth':np.arange(3,11,2), 'min_samples_split':np.arange(5,21,2) } grid_search=GridSearchCV(rfc,parameters,scoring='accuracy',cv=5) grid_search.fit(x,y) print('最佳参数组合是'+str(grid_search.best_params_) +',对应的准确率是:'+'%.4f' % (grid_search.best_score_*100)+'%' )
最佳参数组合是{‘max_depth’: 3, ‘min_samples_split’: 9, ‘n_estimators’: 40},对应的准确率是:97.1910%
这样反而没有找到比之前更好的。如果我们其他参数不变,只改变n_estimators,从10到150,看看模型的准确率是怎么样的趋势。
rfc = ensemble.RandomForestClassifier(random_state=0) parameters = {'n_estimators':np.arange(4,151,2)} grid_search=GridSearchCV(rfc,parameters,scoring='accuracy',cv=5) grid_search.fit(x,y) ss = pd.DataFrame(grid_search.grid_scores_) f = lambda x: x['n_estimators'] ss['n_estimators'] = ss['parameters'].map(f) plt.plot(ss['n_estimators'],ss['mean_validation_score'],label="RandomForest")
grid_search.grid_scores_是返回网格搜索的各个参数的得分
我们看看ss的内容
我们通过map函数去提取parameters的n_estimators的值,并写到ss的n_estimators列中。
然后我们把ss[‘n_estimators’]作为x,ss[‘mean_validation_score’]作为y,画图看看准确率的变化。
我们看到70后就平稳了,那我们看看前面那一段。
可以看出来n_estimators在40-50之间是最好的,也是稳定的。
最终,我们确定是随机森林的n_estimators=40就是我们最优的模型了。
我们看看n_estimators=40的时候,模型是怎么样的。
RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',max_leaf_nodes=None, max_depth=None, max_features='auto', min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=40, n_jobs=1, oob_score=False, random_state=0, verbose=0, warm_start=False)
还可以从里面的参数进行进一步调参,就不一一演示了。
- 比较自动的选择特征值和选择模型及调参,快速有效。
- 如果特征变量有几百个到几万个,记录数几万到千万,这样的特征值遍历的性能是不现实的,需要其他方法处理。
- 可以扩展到其他模型进行调参。
- 特征值的选择只用了logistic模型,如果用其他模型,最优的特征值可能不一样的。
- 其实没有最好的,一定还有更好的,等你来发现。