DBSCAN(Density-Based Spatial Clustering of Applications with Noise,具有噪声的基于密度的聚类方法)是一种很典型的密度聚类算法,和只适用于凸样本集的K-Means聚类相比,DBSCAN既可以适用于凸样本集,...
06月17日
DBSCAN(Density-Based Spatial Clustering of Applications with Noise,具有噪声的基于密度的聚类方法)是一种很典型的密度聚类算法,和只适用于凸样本集的K-Means聚类相比,DBSCAN既可以适用于凸样本集,...
聚类分析(英语:Cluster analysis)亦称为群集分析,是对于统计数据分析的一门技术,在许多领域受到广泛应用,包括机器学习,数据挖掘,模式识别,图像分析以及生物信息,顾客分类,文章分类等。聚类是把相...
大量的特征变量,很多的模型,模型也有很多参数,如何选择合适的特征、合适的模型和合适的模型参数,这对建模是很重要的,但也是很困难的。并且选择最优的方案,方法也是很多的,这里将其中一种方法尽量描述...
决策树是各种机器学习任务的常用方法。 决策树是比较能满足于数据挖掘的方法,因为它在特征值的缩放和其他各种转换下保持不变,对无关特征是可靠的,而且能生成可被检查的模型。 然而,生长很深的树容易学习...
一、什么是决策树 决策树算法,人如其名,结构就像一棵树,有分叉的枝丫和树叶。枝丫的分叉处是关于目标某一个特征的判断,枝丫本体则是关于该特征的判断结果,而叶子则是判断过后产生的决策结果。 上图...
k近邻算法(KNN)是监督学习算法,意味着训练数据集需要有label或者类别,KNN的目标是把没有标签的数据点(样本)自动打上标签或者预测所属类别。同时KNN也可用于回归。 KNN的主要实现过程: 计算训练...
回归要拟合或者预测的因变量是一个连续变量,而分类要拟合或者预测的因变量是一个离线变量。如通过一系列的特征(收入、工作年限、公司规模、是否有房、是否有车、是否有贷款)来预测一个信用卡申请人是否可以发...
预测型数据分析有很多很多种分析的类型,回归、分类和聚类是预测型数据分析的几种主要的类型。 回归和分类属于监督型学习,回归分析在于了解两个或多个变量间是否相关、相关方向与强度,并建立数学模...